The generator matrix

 1  0  1  1  1  1  1  1  1  0  1  1  1  0  1  1  1  1  1  X  1  1 a*X  1  1  1  1  1  0  1  1 a*X  1  1  1  1 a^2*X  1  1  1  1 a^2*X  1  1  1  1  1  X  1  1 a*X  1  1  1  1  1  1  1  1  1  1  1  1  1  1 a*X  1  1  X  1  1 a^2*X  1  1  1  1  1  1  1  1  1  1  1
 0  1  1  a a^2  0 a^2*X+1 a^2*X+a^2  a  1  0 a^2*X+1  a  1 a^2*X+a^2  X a^2*X+a^2 X+a a^2*X+1  1 a^2*X+a^2  a  1  0  a a^2 a^2*X+1 a*X+1  1 a^2*X a*X+1  1 a*X+a  0 a*X+a^2 a*X+1  1 a^2*X+a a*X+1 a*X+1 a*X+a^2  1 a*X+a^2 a*X a*X+a^2 a*X+a^2  X  1 a^2*X+a^2 X+1  1 a^2*X a*X a*X+1 a^2*X+a a^2  a a^2*X+a^2 X+1  1 a^2*X+a a*X a*X a*X+a^2  0  1  X  X  1  0 a^2*X+1  1  0 a*X+a a*X+1 a*X+a^2 a^2*X+1 a*X+a^2 a^2*X+a^2 a^2*X+a  a a^2*X+1  0
 0  0 a^2*X  0  0  0  X  X  X  X  X  X a^2*X a^2*X a*X  X a*X a^2*X a^2*X  0 a^2*X a^2*X a*X a^2*X a*X  0 a*X  X  X a^2*X a*X a^2*X  0 a^2*X a*X  0 a*X a*X  X a*X  X a^2*X a^2*X a*X a*X  0  0  0  X  X  X  X  X a*X a*X  0 a*X  0 a*X  0  0  0  X a*X  0  0 a*X a*X a*X  X  X  X a^2*X  0 a^2*X  X a*X a*X  X  X  X  0  0
 0  0  0  X  0  X a^2*X  0  X a^2*X  X  0 a*X a^2*X  0 a^2*X  0  0 a*X a*X  X  X a^2*X a^2*X  0 a*X a*X  0 a^2*X  X  X a*X  X  X  0  X a^2*X  X  0  X  X  X a^2*X  0 a^2*X  0  0 a*X a*X  X  0 a^2*X  0  0 a^2*X a*X a*X a^2*X a*X  X a*X a*X  X a^2*X  0 a*X a^2*X a*X  X  0  X a*X  0 a^2*X  X  X a*X a*X a*X a*X a^2*X  0  0
 0  0  0  0 a^2*X a^2*X  X a^2*X a*X  0 a^2*X  X  X a*X  X a*X a*X  X a^2*X a^2*X  0 a^2*X a^2*X  X  0 a^2*X  0 a^2*X a^2*X a*X  X  X a*X  X a^2*X  X  0 a*X a*X  0 a^2*X a*X  0  X  0 a*X a^2*X  X a*X  X  0 a^2*X  0  0 a*X  0  X  0 a*X a*X a*X a^2*X  X a*X  X a*X  X  0  X a*X  0 a^2*X a*X a^2*X  0 a*X  X a^2*X  X a*X  0  X  X

generates a code of length 83 over F4[X]/(X^2) who�s minimum homogenous weight is 232.

Homogenous weight enumerator: w(x)=1x^0+117x^232+468x^235+339x^236+1368x^239+600x^240+1824x^243+642x^244+2316x^247+645x^248+2424x^251+513x^252+2400x^255+615x^256+1104x^259+312x^260+348x^263+153x^264+36x^267+60x^268+12x^272+33x^276+15x^280+12x^284+12x^288+9x^292+6x^296

The gray image is a linear code over GF(4) with n=332, k=7 and d=232.
This code was found by Heurico 1.16 in 1.93 seconds.